

SERVICE/SPARE PARTS SERIES F2

Effective: June, 2024 Supersedes: April, 2024

BASIC FORMULAS FOR HYDRAULIC MOTORS

	,	`
FIOW	I٢	١l
ICOAA	()	1)

$$q = \frac{D \times n}{1000 \times \eta_v} [l/min]$$

Torque (M)

$$M = \frac{D \times \Delta p \times \eta_{hm}}{63} [Nm]$$

Power (P)

$$P = \frac{q \times \Delta p \times \eta_t}{600} [kW]$$

- D displacement [cm³/rev]
- n shaft speed [rpm]
- η_{ν} volumetric efficiency
- Δp differential pressure [bar] (between inlet and outlet)
- η_{hm} mechanical efficiency
- $\eta_t \text{overall efficiency}$ $(\eta_t = \eta_v \times \eta_{hm})$

BASIC FORMULAS FOR HYDRAULIC PUMPS

Flow (q)

$$q = \frac{D \times n \times \eta_v}{1000} [l/min]$$

Torque (M)

$$M = \frac{D \times \Delta p}{63 \times \eta_{bm}} [Nm]$$

Power (P)

$$P = \frac{q \times \Delta p}{600 \times \eta_{\star}} [kW]$$

- D displacement [cm³/rev]
- n shaft speed [rpm]
- η_v volumetric efficiency
- Δp differential pressure [bar] (between inlet and outlet)
- η_{hm} mechanical efficiency
- η_t overall efficiency $(\eta_t = \eta_v \times \eta_{bm})$

CONVERSION FACTORS

CONVERSION FACTORS

1 kg	2.20 lb	1 lb	0.454 kg
1 N	0.225 lbf	1 lbf	4.448 N
1 Nm	0.738 lbf ft	1 lbf ft	1.356 Nm
1 bar	14.5 psi	1 psi	0.068948 bar
1 l	0.264 US gallon	1 US gallon	3.785 l
1 cm ³	0.061 cu in	1 cu in	16.387 cm ³
1 mm	0.039 in	1 in	25.4 mm
1°C	⁵ / ₉ (°F-32)	1°F	⁹ / ₅ °C + 32
1 kW	1.34 hp	1 hp	0.7457 kW

Table of Content

General Information	
Cross section	
Specification	5
Operation Check	6
Cavitation	
Preparation	10
Tools required	10
Disassembly	1°
Assembly	13
Split view	16
Part specification	17
Spare part kits	18

If you have questions about the products contained in this catalog, or their applications, please contact: **Pump & Motor Division Europe** phone +46 (0)520 404 600 parker.com/msge

Extra care is taken in the preparation of this literature, but Parker is not responsible for any inadvertent typographical errors or omissions. Information in this catalog is only accurate as of the date of publication. For a more current information base, please consult the division web site at parker.com/msge.

Catalogue

Truck Hydraulics, MSG30-8200-UK.

Video Tutorial

Watch our Assembly and Dissasembly Video Guide.

GENERAL INFORMATION

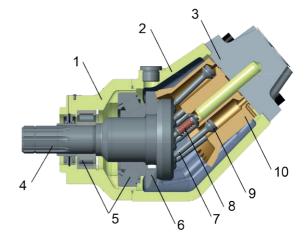
Series F2 is a further development of the twin-flow version of series F1, the very first bent-axis truck pump on the market to feature two entirely independent flows.

With a suitable build-up of the hydraulic system, the main advantage with a twin-flow pump is that three different flows can be provided at the same engine speed.

The twin-flow pump makes it possible to further optimize the hydraulic system and offers:

- · Less energy consumption
- Reduced risk of system overheating
- · Lower weight
- · Easier installation
- · Smart system solutions

The twin-flow pump makes it possible to operate two work functions that are independent of each other which leads to higher speed and an increased operating precision.

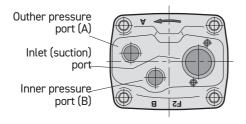

Another requirement can be a large and a small flow, or two equal flows. All of these alternatives are possible with the twin-flow pump.

The pump can be utilised to provide one flow at high system pressure, and, as soon as the pressure has decreased sufficiently, add the flow from the other circuit.

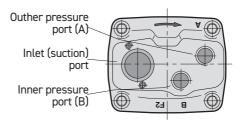
This eliminates the risk of exceeding the PTO power rating and, at the same time, provide an optimal driving function.

F2 CROSS SECTION

- 1. Bearing Housing
- 2. Barrel Housing
- 3. End cap
- 4. Shaft
- 5. Bearings
- 6. Ring gear
- 7. Spherical pistons
- 8. Barrel support
- 9. Piston rings
- 10. Cylinder barrel



SPECIFICATIONS


Frame size F2-	42/42	53/53	55/28	70/35	70/70
Displacement [cm³/rev]					
Port A	43	55	55	69	68
Port B	41	52	28	36	68
Max operating pressure [bar]					
continuous	350	350	350	350	300
intermittent 3)	400	400	400	400	350
Mass moment of inertia J [kgm²]	0.0092	0.0091	0.0091	0.0090	0.0104
Max Shaft speed [rpm]					
(unloaded pump; low pressure)	2550	2550	2550	2550	_ 3)
Max selfpriming speed [rpm]					
Ports A ¹⁾ and B ¹⁾ pressurised	1800	1800	1800	1800	1650
Port A ¹⁾ unloaded,	2100	2100	2100	2100	2100
pressure in port B					
Max input power ²⁾ [kW]	100	127	100	126	131
Weight [kg]	19	19	19	19	19

¹⁾ Valid at an inlet pressure of 1.0 bar (abs.) when operating on mineral oil at a viscosity of 30 mm²/s (cSt).

'Left hand' and 'right hand' end caps

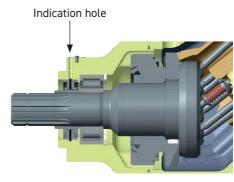
End cap for left hand rotating pump

²⁾ Max 6 seconds in any one minute.

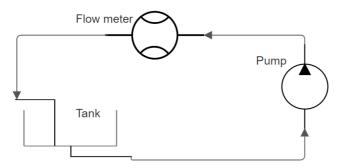
³⁾ Not suitable for engine-PTO

OPERATION CHECK

Check of Shaft Seal


The pump has two shaft seals - the inner one sealing the hydraulic oil in the housing, and the outer one the transmisson oil when the pump is fitted to a PTO. If any of the sealrings leak, the oil will come out through an indication hole.

Check that no oil is dripping out of the indication hole, when the pump is in operation. If there is a leakage from the sealrings, they must be exchanged, See chapter "Exchange of shaft seals".

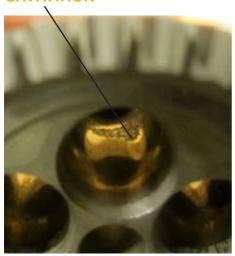

Checking the Flow from the Pump

The flow from the pump can be checked by means of a test instrument comprising a flow-meter and a relief valve.

When the pump is running at about 800 - 1400 r.p.m. and is loaded up to 150 - 200 bar, the flow must not decrease by more than 10%.

Note: A heavy leakage can be caused by a worn-out pump, whereby high pressure oil will come out into the housing in such large quantities that the sealring might be damaged. If there is a steady stream of oil from the indication hole, the pump is probably damaged and will have to be replaced.

Example:


We recommend to test both circuits/ports, as an example test of port A is described.

An F2-70/35 running at 1200 r.p.m. gives - according to the flowmeter. - a flow of 82 l/min in port A.

If the pump is loaded, the flow must not decrease by more than $0.1 \times 82 = 8.2 \text{ l}$ / min, i.e.

the flowmeter should indicated at least $82 - 8.2 = 73.8 \, \text{l} / \text{min}$. If the flow drops below this limit, the pump is worn out and have to be replaced / repaired.

CAVITATION

Cavitation marks in the cylinder barrel bores, on the port side or on the end cap depends on air in the oil.

Reasons can be when inlet pressure/flow isn't sufficient. Example when stopping a fan drive and inertia will run the motor.

Why cavitation?

- · Too high speed
- · Too small suction line

What consequence?

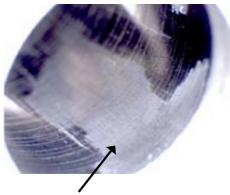
- A metallic sound comes from the system
- Material damage as craters in the goods which contaminate the hydraulic system
- · Lift off if severe cavitation
- · Shaft seal leakage

CAVITATION

End cap with scratched surface. The damage depends on contaminated oil due to poor filtration, clogged filter, previous break down or bad handling when filling the reservoir.

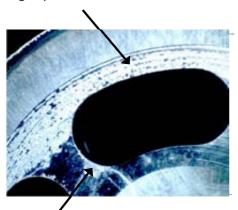
The same damage can be seen on End cap for

The same damage can be seen on End cap for F1 and F2.


Cylinder barrel with severe damaged surface at the porting. The damage depends on contaminated oil due to poor filtration, clogged filter, previous break down or bad handling when filling the reservoir.

Pistons with worn out piston rings, some of them are missing and the spher is very damaged.

This depends on contaminated oil and/or overspeed/cavitation.


CAVITATION

Severe damage in cylinder bore at the pistons turning point.

Reason is to high speed, the piston is thrown out in the pherferie and breaks through the protecting oil film.


High speed wear

High speed wear at the outher pherferie on the cylinder barrel. The protecting oil film can't withstand the high speed.

There are also cavitation marks on the cylinder barrel.

Cavitation

From the same cylinder barrel there are severe cavitation marks in the cylinder bores due to high speed.

PREPARATION

Before disassembling pump:

- · Always keep work space clean
- · Always use correct tools
- Make documentation and take photos if required
- · Only use standard spare parts from Parker

Steps changing shaft seals:

Exchange of shaft seals.

Steps changing seal kit:

Disassembly 1 - 2.

Assembly 1 - 2, 3, 5 - 13

Exchange of shaft seals.

Steps changing spare parts kit:

Disassembly 1 - 6.

Assembly 1 – 13

Exchange of shaft seals.

TOOLS REQUIRED

· Retaining ring tool, internal and external

- · Hex key
- · Plastic hammer
- Mandrel
- Brush
- · Hydraulic press

DISASSEMBLY

1. Fasten the pump in a vice.

2. Loosen the end cap and remove it.

3. Loosen the screws joining the bearing housing and the barrel housing, and remove the barrel housing.

4. Remove the cylinder barrel.

Video Tutorial

Watch our Assembly and Dissasembly Video Guide.

DISASSEMBLY

Remove the pistons, which can be lifted out when held parallelly to the drive shaft.

Remove barrel support.

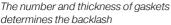
6. Carefully knock the shaft end against the table until the housing comes loose.

7. Remove the bearing and ring gear from the shaft.

ASSEMBLY

Remove the plug from the barrel housing.
 Fit new seal rings in the bearing housing.

 Fasten the bearing housing in a vice. Mount the shaft assembly into the housing. Place an O-ring on the barrel housing.
 Fit the barrel support and the pistons into their respective ball sockets.


Position the cylinder barrel with its mark opposite the mark of the shaft, and enter the pistons into the cylinders and the barrel support into the centre bore.

Slip the barrel housing over the cylinder barrel. Fit and tighten the screws. Make sure that the cylinder barrel with its mark is opposite the mark of the shaft.

ASSEMBLY

5. Fit the end cap, make sure that the guide pin on the end cap correspons to the guide hole on the barrel housing so correct direction of rotation is achieved. Check through the inspection hole that the two marks are opposite each other. If not, correct this.

Tightin the screws lightly. Check that

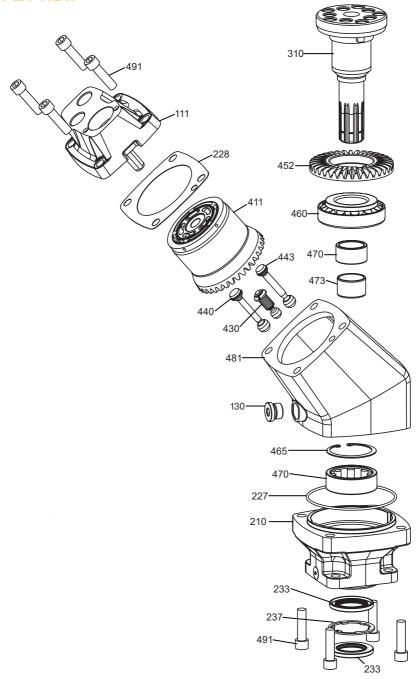
Tightin the screws lightly. Check that there is a backlash. If the backlash is unsufficient, fit more gaskets.

Tightening torques:

F2-All sizes 90±10 Nm

6. The backlash of the gear must be 0,05 - 0,30 mm.

This play can be checked through the inspection hole, with a feeler guage.


The number and thickness of gaskets between end cap and bearing housing determines the backlash.

When assembling, use the same number and thickness of gaskets as found at the disassembly. If the number is unknown, try with 2 gaskets (1 thick and 1 thin).

 Fit the plug at the inspection hole (20 – 35 Nm). Test the pump in the test stand. Always fill the pump with oil before start up.

NOTES

SPLIT VIEW

Spare Parts Series F2 - MSG30-5521-M1/UK

PART SPECIFICATION

Pos Part No.	Description	Qty.	Remarks
111	End Cap	1	End Cap Assy
130	Hex Socket Plug	1	No Spare Part,
			Hex Socket Plug G1/2
210	Bearing Housing	1	No Spare Part
227	0-ring	1	Seal Kit, 0-ring 124*2,5
228	Gasket	1	Seal Kit
233	Shaft Seal	1	Seal Kit
237	Protective Washer	1	Seal Kit
310	Shaft	1	No Spare Part
411	Cylinder Barrel	1	Spare Part Kit
430	Barrel Support	1	No Spare Part
440	Piston	1	Spare Part Kit
443	Piston	1	Spare Part Kit
452	Ring Gear	1	No Spare Part
460	Tapered Roller Bearing	1	No Spare Part
465	Retaining Ring	1	No Spare Part
470	Roller Bearing	1	No Spare Part
473	Inner Ring	1	Spare Part Kit
481	Barrel housing	1	No Spare Part
491	Hex Socket Screw	8	Incl. in End Cap assy and
			Spare Part Kit, Hex Socket Screw
			M12*45 10.9

SPARE PART KITS

End Cap assy

Included in End Cap assy is pos no. 491 and no. 111.

Part No.	Qty	Remarks	
3787580	1	R-rotation,	70/70
3787581	1	L-rotation,	70/70
3781442	1	R-rotation,	70/35
3781444	1	L-rotation,	70/35
3781445	1	L-rotation,	53/53
3781446	1	R-rotation,	53/53
3785971	1	R-rotation,	42/42
3785972	1	L-rotation,	42/42
3785968	1	R-rotation,	55/28
3785969	1	L-rotation,	55/28

Spare Parts Kit

The Spare Parts Kits comprise items 111, 227, 228, 233, 411, 440, 443, 473, 491

To fit	Part No.	Serial No.
F2-042/042-R	3785976	
F2-042/042-L	3785977	
F2-055/028-R	3785974	
F2-055/028-L	3785975	
F2-053/053-R	3781569	2000070001
F2-053/053-L	3781568	2000070001
F2-070/035-R	3781570	2000070001
F2-070/035-L	3781571	2000070001
F2-070/070-R	3786350	
F2-070/070-L	3786351	

Seal Kit

To fit Part No.	Serial No.	
F2-all sizes	3783307	Incl. Pos 227, 228, 233, 237

If more parts are required it is normally not profitable to carry out a repair.

Position notification regarding Machinery Directive 2006/42/EC:

Products made by the Pump & Motor Division Europe (PMDE) of Parker Hannifin are excluded from the scope of the machinery directive following the "Cetop" Position Paper on the implementation of the Machinery Directive 2006/42/EC in the Fluid Power Industry.

All PMDE products are designed and manufactured considering the basic as well as the proven safety principles according to:

- · ISO 13849-1:2015
- · SS-EN ISO 4413:2010

so that the machines in which the products are incorporated meet the essential health and safety requirements.

Confirmations for components to be proven component, e.g. for validation of hydraulic systems, can only be provided after an analysis of the specific application, as the fact to be a proven component mainly depends on the specific application.

Christian Jäger

General Manger

Pump & Motor Division Europe

WARNING - USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH. PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.

The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalogue and in any other materials provided from Parker or its subsidiaries or authorized distributors.

To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

Offer of Sale

Please contact your Parker representation for a detailed "Offer of Sale".

Parker Hannifin Manufacturing Sweden AB

Pump & Motor Division Europe

461 82 Trollhättan

Sweden

Tel. +46 (0)520 40 45 00

www.parker.com/msge

MSG30-5521-M1/UK

06/2024

Your Local Authorized Parker Distributor

© 2024 Parker Hannifin Corporation

